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The free vibration of a flexible thin plate placed into a circular hole and elastically connected to
the rigid bottom slab of a circular cylindrical container filled with fluid having a free surface is
studied. The liquid is assumed to be incompressible, inviscid and irrotational. The effect of the
free surface wave is also taken into account in the analysis. First of all, the exact expression of
velocity potential of the liquid movement is derived by a combination of the superposition
method and the method of separation of variables. With the help of the Fourier-Bessel series
expansion, part of the unknown coefficients in the solution is determined by the consistency
condition between the liquid movement and the plate vibration, in the form of integrals
associated with the dynamic deflection of the plate. Then, the Galerkin method is applied to
derive the eigenfrequency equation of the fluid-plate interaction. Finally, the effects of various
parameters and the free surface wave on eigenfrequencies of the fluid-plate system are dis-
cussed. As a consequence, the accuracy of the nondimensional added virtual mass incremental
(NAVMI) factor solution has also been evaluated by comparing with the more accurate
Galerkin solution. It is shown that the proposed method is also applicable to the vibration
analysis of circular plates in contact with an infinite liquid by only taking a finite but larger size
of liquid to replace the infinite liquid in the computation.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

IT 1S OF GREAT IMPORTANCE to understand the free vibration characteristics of fluid—plate
interaction so that, for example, the propellant in space vehicles can be free from resonance,
large-capacity oil containers in petrochemical industry can survive earthquakes, and ships
and submarines can avoid or be subjected to reduced localized vibrations. It is generally
accepted that a plate in contact with fluid behaves differently from the same plate in air and
that the eigenfrequencies of the plate in contact with liquid are always lower than those in
air.

Numerous investigations, both theoretical and experimental, can be found on circular
cylindrical containers filled with liquids, because of their wide applicability in branches of
engineering. Bhuta & Koval (1964a, b) studied the coupled vibration of liquid in a rigid
circular cylindrical container with a flexible bottom which is treated as a flexible membrane
or an elastic plate. The same problem was investigated by Tong (1967). Tsui & Small (1968)
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investigated the coupled oscillation of liquid in an annular circular cylindrical container
with a flexible bottom. Bauer et al. (1971) examined the nonlinear longitudinal oscillation of
liquid in a circular cylindrical container with an elastic bottom. Furthermore, Bauer (1981,
1995) investigated the hydroelastic vibration of liquid in a rectangular container and
a circular cylindrical container, respectively, of which the free liquid surface is covered by
a flexible membrane or an elastic plate. Recently, Chiba (1993, 1994) studied the hydroelas-
tic vibration of the flexural bottom in a circular cylindrical container under the considera-
tion of the effect of in-plane force in the plate due to the static liquid pressure. Amabili (1997)
and Amabili & Dalpiaz (1998) studied the bulging modes of an elastic bottom in circular
and annular cylindrical containers partially filled with liquid by using the Ritz method.
Cheung & Zhou (2000) and Zhou & Cheung (2000) analysed the hydroelastic vibration of
a rectangular container bottom plate and a vertical rectangular plate, respectively, in
contact with water on one side. Moreover, some investigators (Amabili 1996; Amabili
& Kwak 1996; Espinosa & Gallego-Juarez 1984; Kwak 1991, 1997) studied the hydroelastic
vibration of circular plates in contact with an infinite liquid. Taking into account the effect
of free surface waves, Amabili & Kwak (1999) and Amabili et al. (1998) examined the
vibration of circular plates on a free fluid surface and cylindrical tanks with flexible bottom,
respectively. The present study can be considered as a general case of the elastic bottom in
a rigid cylindrical container partially filled with liquid, i.e., a concentric circular part of the
bottom is elastic, but the remaining parts are rigid. Moreover, the hydroelastic vibration of
circular plates in contact with an infinite liquid can also be included in the present study by
replacing the infinite liquid domain with a finite but larger-size liquid domain in the
computation. Comparisons with available results show that this approximate approach has
quite high accuracy (Amabili & Kwak 1996; Amabili 1996).

In this paper, attention is mainly focused on the bulging modes of the circular plate in
contact with liquid, undergoing only small-amplitude oscillation. However, the sloshing
modes are also included in the present analysis. Numerical results show that the effect of
free-surface waves on the bulging modes of the bottom plate is not significant, unless the
plate is extremely flexible. This phenomenon has also been observed experimentally
(Amabili & Dalpiaz 1998) and in other theoretical studies (Amabili et al. 1998).

In the present study, the method of separation of variables is applied to obtain the
solution of the velocity potential of the liquid and the Galerkin method is applied to derive
the eigenfrequency equation of the liquid-plate system. The convergence study demon-
strates high accuracy and small computational cost of the present approach. The NAVMI
factor solution, of which the basic concept has been developed by Lamb (1921), is also
obtained and compared with the more accurate Galerkin solution. Finally, some valuable
results are presented, which can serve as a benchmark for further research on the aforemen-
tioned problem.

2. MOTION OF LIQUID

Consider an elastic circular plate placed into a hole of the rigid bottom slab of a circular
cylindrical container partially filled with an inviscid, incompressible and irrotational liquid,
as shown in Figure 1. The plate is thin, concentric with the rigid bottom slab, and made of
linearly elastic, homogeneous and isotropic material. The effects of shear deflection and
rotary inertia are neglected in the present analysis. The radii of the container and the
circular plate are Ry and R, respectively, the thickness of the plate is 4 and the depth of the
liquid is H. The densities of the plate and the liquid are defined by p, and p;, respectively.
The liquid has a free surface orthogonal to the axis of the container. Free-surface waves are
considered in the present analysis, and a linear theory of liquid movement is adopted from
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Figure 1. The geometry of a circular cylinder container with an elastic circular plate connected to the rigid
bottom slab.

the small-amplitude oscillation of the liquid. The cylindrical coordinates are used to
describe the movement of the liquid and the vibration of the plate, with the origin located at
the centre of the bottom of the container. According to the above assumptions, the velocity
potential of liquid movement should satisfy the Laplace equation,

3¢ 1o 1% PP

2
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Ve or* ror  r*a0*  0z? 0, 1)
in which the relations between ¢ and component velocities of the liquid are: v, = — d¢/or,
vy = — 1/r 0¢/00, v, = — 0¢p/0z. The impermeability condition of vertical rigid wall is
0
%0, r=R, @
ar
and ¢ should be finite at r = 0:
¢ = finite value, r =0. (3)

It is obvious that ¢ should be 2zn-periodic along the circumference, i.e.,

D0 + 2m) = p(0), (4)

and the vibration of the liquid-plate system can be distinctly classified into symmetric
modes and antisymmetric modes about the 8 = 0 axis. Without loss of generality, in the
present analysis we shall only study the symmetric modes (antisymmetric modes can also be
studied by the same procedure), i.e.,

=0, 0=0. (5)
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Taking the effect of the surface wave into account, the free liquid surface equation is

op 1%

Considering that a concentric circular part of the bottom is elastic and the others are
rigid, the consistency condition of the liquid movement and the plate vibration is

A 0 R, <r<R
0¢ 5 1= = 0>
T ozl T 0w (7
z=0 -, 0 <r < Rl:
ot

in which w is the dynamic deflection of the plate and ¢ denotes the time.
Applying the superposition method to solve the velocity potential, one can assume that

p=0+9, ®)

where ¢ should satisfy such a free-surface condition that the effect of the free-surface wave is
neglected:

=0, z=H, )

while ¢ should satisfy the rigid-bottom condition
— =0, z=0. (10)

Inserting equation (8) into equations (6) and (7) and considering equations (9) and (10), we
obtain

op o 10§ B
Tty it (1)
(3(5 0: RISFSR09
— L = (12)
52 z=0 a—w, OSF<R1,

ot

The first boundary condition and the equations of motion will be solved by the Galerkin
method.
Introducing the nondimensional coordinates and parameters

R:r/RO, é/:Z/H, “:R1/R0> IBZH/RO (13)

and applying the method of separation of variables to equation (1), the solution of the liquid
velocity potential can be given, after considering the boundary conditions (2)-(5) and
(9)—(12), as follows:

¢ =ioHe " AR, {) cos(n0), (14)

n

M8

0

Gu(R, {) cos(n0), (15)

M8

$ = iwHe i

n

0
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where o denotes the radian eigenfrequency of liquid-plate interaction, i =,/ — 1 and

- sinh(&,, ()
n(R Z Emn )|:COSh(8mn[))C) — m], (16)
= i Dj, Ju(ejuR) cosh(e;, fO), (17)
forn>1, and
-_— * 1 h 7 0
Fo(R.0) = Aoo(l =0+ T Auo JofeuoR) [cosh(emoﬁo - %ﬁﬁﬂ (18)
50(& {) = Doo + i Djo Jo(gj0R) cosh(ejofE). (19)

j=1

In the above analysis, 4,,, and D;, (mn=n=j=0and m, n =1, 2, ...) are the unknown
constants. ¢, m=1, 2, 3,...,n=0, 1, 2, ...) are the roots of the derivative of Bessel
function of the first kind of order n, i.e. (McLachlan 1961)

Tiem) =0, m=1,2,3 ..., n=0,1,2, ... (20)

here, ( ) denotes the derivative to the argument.
It is assumed that the dynamic deflection of the circular plate can be written as

ot Z w,(R) cos(n0), (21)

substituting equations (14) and (21) into equation (12) gives

(R, ()

5 22

{0, a<R<1,
=0 (R, 0<R<ua
Substituting equations (16) and (18) sequentially into the above equation, then applying

the Bessel-Fourier expansion to the two sides of the equation in the interval [0, 1],
one has

tanh(,.p)
Ay = ———7"— =1,2 =0,1,2, ... 2
mn 8mn[3cmn an, m b b 3, b n 0, b b b ( 3)
Aoo = — 2Q00> (24)
in which

1 &2, — n’
C J‘ R[Jn('gmn )]2 dR - 272 [Jn(gmn)]zv (25)
an = \[ an(R)Jn(gmnR) dRa (26)

0

Qo0 = f " Rwo(R) dR. @7)
0
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3. EIGENFREQUENCY EQUATION

From the linearized Bernoulli equation in fluid mechanics (Morand and Ohayon 1995), the
dynamic pressure distribution of the liquid p acting on the plate is

0 iy &
p=n 2| e S p(R)cosinb) 8)
at (=0 n=0
Substituting equations (8) and (14)-(19) into the above equation, one has

0

pn(R) = plwzH z [&n(R> C) + d;n(R> C):”C:O- (29)

n=0
According to the vibration theory of thin plates (Leissa 1969), the governing differential
equation of the plate under the pressure distribution p is

0w

where D = Eh?/[12(1 — v?)] is the flexural rigidity of the plate; v and E are Poisson’s ratio
and Young’s modulus, respectively. V* = (V?)? is the double Laplace operator. Substituting
equations (17) and (19) into the above equation, one has

DV;‘{Wn(R) - pphwzwn(R) = - wzle[q;n(R, O + Q;n(R, C):”{:O, (31)

where Vi = (V2)%; V2 = d?/dr* + (1/r)d/dr — n?/r?. It is assumed that the solution of the
above equation can be expressed in the form

iR = 5 B R ), (2

where B;, (i = 1,2, 3, ...) are the unknown constants, and w;,(k;,R/x) (i = 1,2, 3, ...) are the
modes of the solid circular plate in air (Leissa 1969),

Wi <@ R) = J" <& R) + aiy, In <@ R), (33)
o o o

where I,,(k;, R/o) is the modified Bessel function of the first kind of order n, and the constants
a;, and k;, are determined by the boundary conditions on the plate. For example, if the plate
is with elastically rotational constraint and zero deflection along the edge, one has

_ Jn(kin)
G T k)

(34)
and k;, (i =1, 2, 3, ...) are the roots of the following eigenvalue equation:

2
Jn+2(kin) + Jnfz(kin) - k_ (V + K![/)[Jn+l(kin) - Jn*l(kin)]

4 2
- <2 + a >Jn(kin) + ain{InJrZ(kin) + In—Z(kin)

2
kin

4yn?

2
kin

b0 Kol + Lot + (2 -

> Lki)} =0, (35)

where K,, = k,R/D is the nondimensional stiffness of the rotational constraint k.
Truncating i in equation (32) up to I + 1 and m and j in equations (16)-(19) up to M + 1

and J + 1, respectively, the eigenfrequency equation of the liquid—plate interaction can be
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obtained by using the Galerkin method (multiplying the two sides of equation (31) by
w;, R(k;,/o0) and integrating between 0 and o) as follows:

kat 1 miy mi, ... myp By,
kﬁz 0 "2 1 0 o ﬁ/lzl ﬁ/lrzlz ﬁ/lgl an
— 4 . - .
0 0
Koy 1 mpg M ... My By,
miy Ay ... Ay | | Dy,
myy  mh coomh D,,
TIVERA 2 120 forn>0, (36)
v : :
ﬁﬂl ﬁ”l?z ﬁ"?J DJn
kg1 1 miy my ... mi Bio
ké 0 1 0 my,  md n9 B
02 2 o My My ... Myp 20
— A + - . . .
0 0 Y :
kor 1 My g iy Bro
ﬁl(l)o Vh(l)1 Vh?z ﬁ’l(l)J Doo
~ ~0 0 ~0 Dy,
m m m m
g2 e e T 1| Dy |=0 forn=o. (37)
Y : :
Mo My M, iy Djq
In the above two equations,
2 Pl oy Pi h
A® =—=— w*Rj, =—, =—, 38
D W IRy o PR Y R, (38)
& tanh(e,,
i = ( y LblmBo Q,-mn> / (o2 for n >0, (39)
m=1 gmncmn
* tanh(e,,
my =20709 +( > tanhienof) QimoQjmo |/(0°m3}), (40)
m=1 SmOCmO
Vh?j = ﬁQijn/(“3m?i) forj#n#0, (41)
iy = PO /(e mi) 42)

and
2

* kin o
Qimn = J‘ORWin <; R) Jn('gmnR) dR = m {kin J,,(gmnog) Jn+ 1(3mn06)
0(2
K25 (g in Tnom) Jos 1t

+ SmnaJn(kin) In +1 (Emn OC)}a (43)

- 8mnaJn(kin) Jn+ 1(8mn OC)} + Qin

1
Q? =ao’ j Rwio(kioR) dR = O(Zwl(kio)/kio, (44)
0
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2

1 1(. . 2
i = J Ry (kR)* dR = {Jﬁ(k,-n) + <1 - Z—) Tatki) - a;[lf(m - (1 + ,’j—) If(kmﬂ}
0 in in

Ay
+ k_ [Jn(kin) In+ l(kin) + In(kin) Jn+ l(kin)]' (45)
It should be mentioned that when deriving equations (36) and (37), the orthogonal
relations among dry modes of the circular plate have been utilized.
Finally, equations (36) and (37) can be written in a compact form as

{[K] = 22(U] + pIMD)} {B} + A*u[M1{D} =0, (46)

in which, [I] is a unit diagonal matrix, u = o¢/y and [ M] are, respectively, referred to as the
density-thickness correction factor and the nondimensional added virtual mass incremental
(NAVMI) matrix (Kwak 1991).

It is obvious that equation (46) cannot be solved until {D} is given. However, substituting
equations (14)-(19) into sloshing equation (11) provides a set of additional Galerkin
equations which can be written in a matrix form as

oh on oh on
Vit Viz2 ... Vir By, Vi1
ohn oh oh Sn
Va1 V22 ... Var B;, n V3, 0
0
on -n ohn Sn
Vygr Vy2 - VI By, Vir
S11 Dy,
s3, 0 D5,
— %t 0 . =0 for n>0 47)
n
Sy Dy,
[~ N0 0 0] [~ ]
207 205 ... 20; B 0
=0 =0 =0 10 ~0
Vii  Viz ... Vip Vit 0
-0 -0 -0 Bao ~0
Va1 Voo Vor + Voo
0
By
~0 ~0 -0 _ ~0
| Vy1 Vy2 e Vyr | B Viys_|
—1
0 0 Do
S11
5 0 D,
— At S22 . =0 for n=0. (48)
0 . :
o Dy,

In the above two equations,
Vij = Qjin [tanh(e;,f) sinh(e;,f) — cosh(&;,)]/Cins
¥l = &juf sinh(ef), s} = cosh(e;f), t = D/(gp,Rih) (49)

where ¢ is called rigidity—gravity ratio of the plate.
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Combining equation (46) with equations (47) and (48), one has the following eigenvalue

equation:
{[[If] [91} B iZ[m L] — u[m}} [{B}} o, (50)

Using standard eigenvalue programs, the nondimensional frequency parameter A and
corresponding eigenvector {B} and {D} can be easily obtained from the above equation.
And vibration modes are determined by back-substitution of the eigenvalues, one by one, in
the usual manner. It should be mentioned that when the sloshing equations (47) and (48) are
added to the eigenvalue problem, in general the matrices are no longer symmetrical. This
could give complex eigenvalues. However, in a recent paper, Amabili (2000) has demon-
strated the formulation of ["] = u[M]". In such a case, equation (50) can be transformed
into a Galerkin equation for symmetric matrices that give real eigenvalues; this shows that
real eigenvalues are obtained also in this case.

From equation (50), coupled sloshing and bulging modes can be simultaneously ob-
tained. It is clear that if free-surface waves are neglected, then the eigenfrequency equation
above will degenerate into

{[K] = 22([1] + u[MD}{B} = 0. (51)

4. STUDY OF CONVERGENCE

In order to demonstrate the high accuracy and the small computational cost of the
proposed method, a convergence study of eigenfrequencies is first carried out for a clamped
circular bottom plate in contact with liquid when considering the effect of free-surface
waves. Two different plate-container radius ratios are considered: o = 0-2 and o = 1. The
liquid-plate density ratio is taken as ¢ = 0-15; depth-radius ratio of liquid f = 1; thick-
ness-radius ratio of the plate y = 0-05; the rigidity-gravity ratio ¢ = 0-1; and Poisson's ratio
v = 0-3. Table 1 gives the first five nondimensional frequency parameters 4;, (i = 1,2, 3,4, 5),
respectively, for n = 0 and 1 with respect to different number of terms of dry modes, steadily
increasing from 1 to 8. From the table, it is seen that the eigenfrequencies converge quickly
and monotonically from the above by increasing the number of terms of the dry modes.
Both the accuracy and the speed of convergence are basically unaffected by the number of
nodal diameters and the plate-container radius ratio. This will ensure a small-size eigen-
frequency equation to be solved for all cases. In general, eight terms of the dry modes can
give the first five eigenfrequencies with sufficiently satisfactory accuracy.

Table 2 gives the first five nondimensional frequency parameters A, (i =1, 2, 3, 4, 5),
respectively, for n = 0 and 1 with respect to the number of terms of the series in equations
(28) and (29). It was found that the number of terms needed in the summation series
increases with a decrease of the plate-container radius ratio o.

5. SURFACE WAVE EFFECT

A close scrutiny of the literature on hydroelastic analysis of liquid—plate and/or liquid—shell
interaction shows that two different mathematical models are frequently applied when the
liquids have a free surface. One of them neglects the effect of free-surface waves; in such
a case only the bulging modes of the plates/shells are dealt with. The other takes the effect of
free-surface waves into account, in which case both the bulging modes of the plates/shells
and the sloshing modes of the liquids are considered. Therefore, it is very important to
justify whether the effect of free-surface waves can be neglected, and under what circumstances.
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TABLE 1
Nondimensional eigenfrequencies of bulging modes of clamped circular plates in contact
with liquid by using different numbers of terms of dry modes; M =40 and J =5

o I /’{ln ;LZn /13n )“4n )“Sn
n=20
0-2 1 6-0407
2 6-0351 30-400
3 6-0346 30366 74-643
4 6:0345 30-360 74-585 138-69
5 6-0345 30-359 74-572 138:61 222-53
6 6:0345 30-358 74:567 138-59 222:45
7 6:0345 30-358 74-566 13859 22242
8 6-0345 30-358 74:565 138-58 22241
1-0 1 6-3868
2 6-3814 29735
3 6-3808 29:675 73-620
4 63807 29-664 73514 13742
5 6-3807 29-662 73-488 137-28 221-06
6 6-3807 29-661 73-480 137-24 220-90
7 6-3807 29:660 73477 137-23 220-85
8 63807 29-660 73-475 137-22 220-83
n=
0-2 15-436
15-428 49-797
15-427 49-771 103-94
15-427 49-767 103-90 177-88
15-427 49-765 103-89 177-83 271-63
15427 49-765 103-89 177-82 271-58
15-427 49-764 103-89 177-82 271-56
15-427 49-764 103-89 177-81 271-55
1-0 14-960

14:943 48-804

14-941 48-745 102-63

14:940 48-733 102-53 176:33

14-940 48729 102-51 17621 269-85
14-940 48-728 102-50 176:17 269-71
14940 48-727 102-:50 176:16 269-66
14:940 48-727 102-50 176:15 269-65

O NP WO 0N AW~

In Tables 3 and 4, the effect of free-surface waves on the nondimensional eigenfrequencies
of the first three bulging and sloshing modes is investigated. It is assumed that the
liquid-plate density ratio ¢ = 0-28 and the plate thickness-radius ratio y = 0-05. Two
different plate-container radius ratios, « = 0-1 and 1, two different liquid depth-radius
ratios, f = 0-1 and 1, and five different rigidity-gravity ratios, t = 0-1, 1, 10, 100, 1000, are
considered. In the present computations, M =40, [ = 8 and J = 5 are used. The results
obtained when neglecting the interaction of bulging modes and sloshing modes are also
given for comparison. One can see that the effect of free-surface waves on eigenfrequencies
decreases with decreasing plate-container radius ratio o and increases with decreasing
rigidity-gravity ratio t. However, the effect is significant only for the fundamental eigen-
frequencies of axisymmetric modes (n = 0) under the small rigidity-gravity ratio condition
(t = 1 and 0-1). From the above analysis we can conclude that in most cases, the interaction
of bulging modes and sloshing modes can be neglected, unless the plates are extremely
flexible.
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TABLE 2
Nondimensional eigenfrequencies of bulging modes of clamped circular plates in
contact with liquid by using different numbers of terms of the summing series;

I=8and J=5

o m )“ln ;“2n j'?an )“4n )“5n

n=0

0-2 5 6-1160 36-536 86-004 155-10 243-93
10 60353 31-059 84-611 154-03 242-96
20 6-0345 30-360 74-628 141-37 24076
30 60345 30-358 74-568 138-61 222-62
40 6-0345 30-358 74-:565 138-58 222-41

0-5 5 6-1322 30-357 78:365 152:97 242:21
10 6-1322 30-342 74-530 138-62 22372
20 6-1322 30-341 74-520 138:52 222-33
30 61322 30-341 74-520 138-52 22233
40 6-1322 30-341 74-520 138:52 222-33

1-0 5 6:1761 29-660 73-477 137:25 221-14
10 6-1761 29-660 73-475 13722 220-83
20 6-1761 29-660 73-475 137-22 220-83
30 6-1761 29-660 73-475 137-22 220-83
40 6:1761 29-660 73-475 13722 220-83

n=1

0-2 5 17-610 58:353 117-74 196-77 295-51
10 15-464 55222 116:39 195-62 294-43
20 15-427 49-780 104-22 190-61 292-47
30 15-427 49765 103-90 177-89 272:32
40 15-426 49-764 103-89 177-81 271-55

0-5 5 15-391 50-849 116:12 195-36 294-16
10 15-385 49-693 103-83 17798 287-05
20 15-384 49-690 103-80 17771 271-41
30 15384 49-690 103-80 177711 271-40
40 15-384 49-690 103-80 17771 271-40

1-0 5 14-940 48728 102-51 176-39 28326
10 14-940 48-727 102-50 176-15 269-65
20 14-940 48-727 102-50 176:15 269-65
30 14-940 48-727 102:50 176:15 269-65
40 14-940 48727 102-50 17615 269-65

6. NUMERICAL RESULTS

In this section, some important results are reported from equation (51) when neglecting the
effect of free-surface waves. In the computations, unless otherwise stated, the following
parameters are used: the liquid—plate density ratio ¢ = 0-15; the thickness-radius ratio of
the plate y = 0-05: Poisson’s ratio v = 0-3. The numbers of terms used in the expansions of
plate deflection and velocity potential are M =40, I =8 and J = 5.

Figure 2 gives the first six eigenfrequency ratios for the axisymmetric vibration (n = 0) of
clamped circular plates with respect to o« when f = 1. In the figure, r; denotes (ith
eigenfrequency of wet modes)/(ith eigenfrequency of dry modes). It is seen that, for a given
circular plate, the eigenfrequencies converge rapidly to constant values as the radius of the
container and the depth of the liquid increase. This implies that the liquid in a half-space can
be approximately replaced by a liquid with larger radius and depth in the computation.
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TABLE 3
The effect of free-surface waves on the nondimensional eigenfrequencies of bulging modes

of clamped circular plates; only the first three modes for n = 0, 1 are reported

t 10 420 /30 211 /21 231
a=1, =01
01 84171 32437 73939 17-270 49-990 100-60
1 8:2320 32:398 73927 17-188 49-969 100-59
10 82135 32:394 73926 17-180 49-966 100-59
100 8-2116 32:394 73935 17-179 49-966 100-59
1000 82114 32:394 73935 17-179 49-966 100-59
(82114) (32:394) (73-935) (17-179) (49-966) (100-59)
a=1,p=1
01 5-3578 25454 65603 12-462 42-754 92:680
1 47891 25-434 65:601 12-426 42-754 92:680
10 47278 25432 65-600 12:423 42754 92:680
100 47217 25-432 65-600 12-422 42-754 92:680
1000 47211 25432 65-600 12:422 42-754 92:680
(4-7210) (25-432) (65-600) (12-422) (42-754) (92-680)
a=01p=1
01 4-8059 26:191 66817 12-989 43-967 94-344
1 4-7460 26189 66816 12-989 43-967 94-344
10 47397 26:188 66-816 12-989 43-967 94-344
100 47391 26:188 66816 12:989 43-967 94-344
1000 47390 26:188 66816 12-989 43-967 94-344
(47390)*  (26:188) (66:816) (12-989) (43-967) (94-:344)

* Data in parentheses are those when the effect of free-surface waves is neglected.

Figure 3 gives the first six eigenfrequency ratios for the axisymmetric vibration of
clamped circular plates with respect to the plate—container radius ratio . The depth-radius
ratio of liquid is taken as § = o, which means that the depth of the liquid is the same as the
radius of the plate. It can be seen that the eigenfrequencies, especially the fundamental
frequency, tend to become lower as a approaches unity (x = 1 means that the bottom of the
container is completely elastic). Moreover, one can find that for a given circular plate, the
eigenfrequencies also converge rapidly to constant values with increasing radius of the
container. This means that the liquid with infinite radius can be approximately replaced by
a finite but larger-radius liquid in the computation.

Figure 4 gives the first six eigenfrequency ratios for the axisymmetric vibration of
clamped circular plates with respect to the liquid depth-radius ratio f when the
plate-container radius ratio o = 0-5. It is found that an increase of the liquid depth results in
a decrease of the eigenfrequencies, and that the effect of the liquid depth on the fundamental
mode is significantly larger than that on higher modes.

Figure 5 gives the first six eigenfrequency ratios for the axisymmetric vibration of
clamped circular plates with respect to the density-thickness correction factor u when the
plate-container radius ratio « = 0-5 and the depth-radius ratio of liquid = 1. One can see
that eigenfrequencies decrease monotonically with increasing density-thickness correction
factor u.

Table 5 gives the first six nondimensional wet-mode eigenfrequencies of circular plates
with elastically rotational constraint and zero deflection along the edge for the axisymmet-
ric modes (n=0) and the modes with a nodal diameter (n=1). Two different
plate-container radius ratios « = 1 and 0-5, two different liquid depth-radius ratios, f = 1
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TABLE 4
The effect of free-surface waves on the nondimensional eigenfrequencies of sloshing modes of liquids
for clamped circular plates

t 10 /20 /30 211 /21 /31
a=1, =01

01 11703 2-0593 27963 0-057727 1-6084 2:4315

1 037379 065164 0-88437 0-18303 0-50983 0-76909
10 0-11832 020608 0-27966 0-057896 0-16126 0-24321
100 0037421 0065168 0088438  0-018309 0-050996 0076911
1000 0011834 0-020608 0027966  0-0057898 0-016126 0-024321
a=0% =01

01 1-1834 2-0608 27966 0-057898 1-6126 2:4321

1 0-37421 065168 0-88438 0-18309 0-50996 0-76911
10 0-11834 0-20608 0-27966 0-057898 0-16126 024321
100 0037421 0065168 0088438  0-018309 0-050996 0076911
1000 0011834 0-020608 0027966  0-0057898 0-016126 0-024321
a=1,p=1

01 6-1904 8-3759 10-086 4-1705 7-3015 9-2392

1 19565 2-:6487 3-1896 1-3228 2:3089 29217
10 061872 0-83759 1-0086 041841 0-73015 0-92392
100 0-19566 026487 0-31896 0-13232 0-23089 0-29217
1000 0061872 0-083759 0-10086 0041843 0-073015 0-092392
a=01,p=1

01 6-1887 8-3759 10-086 4-1842 7-3015 9-2392

1 1-9565 2-6487 3-1896 1-3232 2-:3089 29217
10 061872 0-83759 1-0086 041843 0-73015 092392
100 0-19566 026487 0-31896 0-13232 0-23089 029217
1000 0061872 0-083759 0-10086 0041843 0-073015 0-092392
a=0%pf=1

01 6-1872 8-3759 10-086 4-1843 7-3015 9-2392

1 1:9566 2-6487 3-1896 13232 2-:3089 29217
10 061872 0-83759 1-0086 0-41843 0-73015 092392
100 0-19566 026487 0-31896 013232 0-23089 0-29217
1000 0061872 0-083759 0-10086 0041843 0-073015 0-092392

* Completely rigid bottom.

and 0-5, and three different nondimensional rotational stiffnesses, K, = 1, 10 and 100, are
considered. It can be seen that the eigenfrequencies increase with the increase of the stiffness
of the rotational constraint.

7. NAVMI FACTOR SOLUTION

From equation (51) one can find that, if the NAVMI matrix [M] is a diagonal one, the
analysis will be greatly simplified. In this case, the wet-mode parameters can be directly
given as 1;, = kZ/</1 + uM?, in which M?, is the ith diagonal element of [M] corresponding
to the nth nodal diameter and is called the NAVMI factor (Kwak 1991); this means that the
wet modes of the plate are the same as those of the dry modes. This simplification has an
obvious advantage, in that the NAVMI factors, being independent of the density-thickness
correction factor u, need only to be computed once and can be used for all cases.
Unfortunately, in fact, the matrix [M] is never a diagonal one, although it is a diagonally
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Figure 2. The first six eigenfrequency ratios r; (i = 1, 2, ..., 6) of wet modes and dry modes for axisymmetric

vibration (n = 0) of clamped circular plates as a function of the plate-container radius ratioo; f = 1. @, r; Il r5; A,
r3; X, ra X, rs; @, re.
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Figure 3. The first six eigenfrequency ratios r; (i = 1, 2, ..., 6) of wet modes and dry modes for axisymmetric

vibration (n = 0) of clamped circular plates as a function of the plate-container radius ratioo; f = o.. ®,r; W r5; A,
r3; X, e X, rs; @, re.

dominant matrix in many cases. Therefore, it is of great importance to know the extent of
error in NAVMI factor solutions used in engineering problems.

The percentage error in the NAVMI factor solution versus the Galerkin solution for
a clamped circular plate is given in Figure 6 with respect to the density—thickness correction
factor u for f = 1 and o = 0-5. The first three axisymmetric modes (n = 0) and the first two
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Figure 4. The first six eigenfrequency ratios r; (i = 1,2, ..., 6) of wet modes and dry modes for the axisymmetric

vibration (n = 0) of clamped circular plates as a function of the depth-radius ratio of liquid f; & = 0-5. @, r;; W, r5;
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Figure 5. The first six eigenfrequency ratios r; (i = 1, 2, ..., 6) of wet modes and dry modes for the axisymmetric
vibration (n = 0) of clamped circular plates as a function of the density-thickness correction factor y; « = 0-5 and
B=1 0 1M1 A1 X, Ty X, 75 @, 7.

modes with one and two nodal diameters (n = 1, 2) are investigated. In the figure, e denotes
(1 — 2 NAV MI factor solution/Galerkin solution) x 100. Figure 7 gives the percentage error
with respect to f when u = 10, « = 0-5 and Figure 8 gives those with respect to o when
1 =10, f = a. From Figures 6 and 7, one can see that both the density-thickness correction
factor ¢ and the liquid depth-radius ratio f have a larger effect on the error in NAVMI
factor solutions for the axisymmetric modes with nodal circles (i > 2), and the errors
increase with u and f. However, the effect of u and f on the error in NAVMI factor
solutions for other wet modes, especially for wet modes without nodal circles (i = 1) is very
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TABLE 5
Nondimensional eigenfrequencies of the first six bulging modes of circular plates with elastically
rotational constraints and zero deflection along the edge

ﬁ Kl// o ﬂvln ;“Zn ;“3n )~4-n ;~5n ;“6n
n=>0
1 1 1 3-3368 22-837 62:202 121-36 200-30 299-01
05 3-4142 23-464 63-087 122-42 201-50 300-32
10 1 49548 26004 66-373 126:23 20569 304-79
05 5-0372 26-716 67-407 127-475 207-08 306-30
100 1 57911 29-011 72-019 134-65 21687 318-66
05 5-8629 29713 73-087 13598 218-41 320-37
05 1 1 4-0338 23-561 62771 121-87 200-77 299-46
05 37610 23-845 63-474 122-81 201-88 300-70
10 1 5-9017 27029 67-206 126-95 206-34 305-39
0-5 5-5040 27-249 67-939 127-99 207-59 306-80
100 1 6-8220 30-205 73-090 135-63 21779 319-54
0-5 6-3687 30-320 73727 136-64 219-07 321-04
n=1
1 1 1 10-093 39-460 88-681 15770 246-51 355-08
05 10-567 40-322 89-771 15896 247-90 356-58
10 1 12:739 43-342 93-370 162-97 25220 361-12
05 13-238 44-332 94-647 164-44 253-82 362-85
100 1 14-581 47-720 100-51 17291 264-88 376-44
05 15-054 48707 101-85 174-51 26670 378-43
0-5 1 1 10-696 39-870 89-008 158-00 24678 355-34
0-5 10-687 40-442 89-892 159-08 248-02 356-70
10 1 13-424 43-904 93-833 163-37 25257 361-46
0-5 13-370 44-484 94-804 164-60 253-98 363-00
100 1 15-283 48-378 101-11 173-46 265-41 376:95
05 15185 48-872 102-03 17470 26690 378-63

e (%)
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Figure 6. The percentage error in the eigenfrequencies obtained via NAVMI factor solution versus the Galerkin
solution for clamped circular plates in contact with liquid as a function of the density-thickness correction factor y;
p=1lando=05.€n=0,i=1;Bn=0,i=2;An=0,i=3; x,n=1i=1;%x,n=1i=2,@,n=1,i=3.
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Figure 7. The percentage error in the eigenfrequencies obtained via NAVMI factor solution versus the Galerkin
solution for clamped circular plates in contact with liquid as a function of the depth-radius ratio of the liquid f;
nu=10and o =05, n=0,i=1,Mn=0,i=2; A n=0,i=3; x,n=1,i=1; x,i=2,@,n=1,i=3.
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Figure 8. The percentage error in the eigenfrequencies obtained via NAVMI factor solution versus the Galerkin
solution for clamped circular plates in contact with liquid as a function of the plate-container radius ratio o; 4 = 10
and f=o. @, r; Wy A 1y X, 14 X, 75 @, 16

small. Moreover, from Figure 8, it is seen that the maximum error in the NAVMI factor
solutions occurs for « = 1 (in this case, the bottom of the container is completely elastic).
However, the error quickly decreases and reaches a plateau as the container radius is
increased.

The NAVMI factors for circular plates with elastically rotational constraints and zero
deflection along the edge have been studied in detail. Three NAVMI factors for axisymmet-
ric modes (n = 0), two NAVMI factors for the modes with one nodal diameter (n = 1) and
one NAVMI factor for the modes with two nodal diameters (n = 2) are given in Tables 6
and 7, respectively. Seven different plate-container radius ratios, « = 1, 0:9, 0-8, 0-7, 0-6, 0-5
and 0-1, and two different liquid depth-radius ratios, § = 1 and f§ = o, are considered. The
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TABLE 6
NAVMI factors M’ for circular plates with elastically rotational constraint and zero deflection on
edge; axisymmetric modes (n = 0)

K, i a=1 =09 a=08 oa=07 a=06 o=05 o=01 a=0
p=1
0 1 078213 075929 0-74400 073454 072974 072869  0-74780  (0-75539)*
2 030529 0-28580 027314 026475 025934 0:25610  0-25553  (0-25680)
3 017607 016493 0-15846 015438  0-15182  0-15031  0-14988  (0-15041)
I 1 076529 074436 073038 072181 071757 0-71683  0-73566  (0-743)
2 031312 029308 027997 027126 026564 026231  0-26200  (0-264)
3 017964 016807 0-16129 015700 0-15430 015270  0-15231
10 1 070301 068827 0-67856 067287 0-67043 067065 0-68826  (0-694)
2 032864 030900 029583 0-28701 028134 0-27806  0-27882  (0-281)
3 019323 018051 0-17273 016773  0-16457 016271  0-16252
100 1 066060 064946  0-64224 063821  0-63681 063756  0-65418  (0-661)
2 031841 030182 029048 028284 027796 027518  0-27660  (0-278)
3 019402 018239 0-17499 017016  0-16710  0-16531  0-16541
oo 1 065320 064264 063583 063207 0-63084 063167 0-64810  (0-65381)
2 031406 0-29827 028744 028014 027547 0-27284 027434  (0-27613)
3 019151 018048  0-17341 016877 0-16583 016412  0-16428  (0-16513)
p=ua
0 1 07813 069537 063000 0-58374 0-55425 0-53842 0-53059 [0-53059]"
2 030529 027482 025365 023925 023023 022541  0-22304  [0-22304]
3 017607 016040 0-15041 014384  0-13978 013763  0-13656  [0-13656]
1 1 076529 068255 062012 057592 0-54773 053260  0-52512
2 031312 028086 025828 0-24287  0-23319 022803  0-22548
3 017964 016314 0-15251 014550 0-14116  0-13886  0-13772
10 1 070301 063419 0-58202 0-54501  0-52138  0-50870  0-50242
2 032864 029359 026846 025112  0-24019 023435 0-23146
3019323 017386 0-16092 015225 0-14685 014398  0-14256
100 1 066060  0-60058  0-55496  0-52254  0-50183 049071  0-48521
2 031841 028633 026297 024674 023647 023098  0-22826
3 019402 017507  0-16199 015311  0-14755 014459  0-14312
oo 1 065320 059467 0-55015 0-51852  0-49830 048745  0-48208
2 031406 028303 026037 024460 0-23463 022929  0-22665
3 019151 017325 016056 015192  0-14650  0-14362  0-14219

*The values in ( ) are from Amabili & Kwak (1996).
TThe values in [ ] are from Amabili (1996).

available results from literature for the limiting cases (infinite radius liquid) are also given
for comparison (Amabili and Kwak 1996; Amabili 1996).

It is seen that all the NAVMI solutions are close to the limiting cases as the container
radius is increased. This demonstrates once again that, using the present method, the
infinite liquid can be replaced by finite but larger-size liquid in the computation without
serious error.

8. CONCLUSIONS

The theoretical solution for the hydroelastic vibration of circular plates is presented. The
plate is placed into a hole of the rigid bottom slab of a circular cylindrical container
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TABLE 7
NAVMI factors M’ for circular plates with elastically rotational constraint and zero deflection on
edge; the modes with one and two nodal diameters (n = 1, 2)

K, ni a=1 =09 o=08 a=07 «a=06 o=05 a=01 o

p=1

0 1,1 040489 037993 0-36296 035134 0-34352 033842  0-33221 (0-33225)*
1,2 020036 018776  0-18046 017595 0-17313  0-17141  0-16952  (0-16951)

2,1 026173 024520 023629 0-23143 022884  0-22753  0-22675  (0-22675)

(

1 1,1 039866 037493 0-35873 034762 0-34012 033522 0-32933  (0-329)
1,2 020246 0-18955 018198 0-17729 0-17435 0-17254  0-17055
2,1 025898 0-24318 023464 0-22996 022747 022620 0-22545  (0-225)

10 1,1 037107 0:35231 0-33929 0-33026 032412  0-32009 0-31519  (0:315)
1,2 020681 019374  0-18577 018072  0-17750 017551  0-17326
2,1 024536  0-23285 022599  0-22220 022015 021910 0-21848  (0-219)

100 1,1 0-34683 033194 0-32143 031408 0-30904 030571 0-30163  (0-301)
1,2 020031 0-18911 0-18204 0-17746  0-17451 017266  0-17055

0

2,1 023089 022142 021615 0-21320 0-21158 021073 021024  (0-210)
oo 1,1 034208 032789 0-31786 0-31082  0-30598 030278  0-29886  (0-29883)
1,2 019750 0-18690 0-18017 0-17578  0-17295 017117 0-16914  (0-16914)
2,1 022774 021888 021393 02115 020962 0-20881 020835  (0-20834)
f=uo
0 1,1 040489 037391 0-35201 033708 0-32781 032299  0-32071  [0-32071]%
1,2 020036 0-18653 0-17806 0:17266  0-16941 0-16774 0-16695 [0:16695]
2,1 026173 024465 023528 023011 022743 022620 022575
1 1,1 039866 036910 034824 033396 032504 032032 0-31812
1,2 020246 0-18822 017949 0-17392 017046 0-16863 016780
2,1 025898 024264 023365 022868 022610 022492 022449
10 1,1 037107 034729 033032 031863 031129 030739  0-30559
1,2 020681 0-19213 018277 0-17670 017290  0-17090  0-16999
2,1 024536 023238 022514 0-22111  0-21899 021801 021766
100 1,1 034683 0-32762 0-31376 0-30416 029811 029488  0-29339
1,2 020031 0-18750  0-17907 0-17351 0-17002 0-16817 0-16732
2,1 023089 022103 021545 021231 021063 020984  0-20956
oo 1,1 034208 032371 031043 030123 029542 029231 029089
1,2 019750 0-18533 017727 0-17195 016859 0-16681 016599
2,1 022774 021851 021326 021030 020871 020796  0-20770

*The values in ( ) are from Amabili & Kwak (1996).
"The values in [ ] are from Amabili (1996).

partially filled with liquid. The exact solution for the velocity potential of liquid motions is
given by the method of separation of variables. Part of the unknown coefficients in the
potential velocity is determined by using the Fourier-Bessel expansion to the liquid—plate
interface equation, in the form of integrals associated with the dynamic deflection of the
plate. The Galerkin method is applied to derive the eigenfrequency equation from the
governing equation of plate vibration under the hydrodynamic pressure and the equation of
free-surface waves. The high accuracy and small computational cost are demonstrated by
the convergence study. The effect of free-surface waves on eigenfrequencies of both bulging
and sloshing modes is studied. It is shown that, in most cases, the interaction between
bulging modes and sloshing modes can be neglected, unless the plates are extremely flexible.

The effects of size and density parameters of both the plate and the liquid on the bulging
modes of liquid-plate interaction are discussed in detail. As a consequence, the NAVMI
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factor solution is also given and its accuracy is evaluated by comparing with the more
accurate Galerkin solution. Moreover, the results show that for a given circular plate,
eigenfrequencies tend to converge to constant values with increasing radius of the container.
This means that the present method is also applicable to study the hydroelastic vibrations
of circular plates in contact with infinite liquid, by considering a finite but larger-size liquid
to replace the infinite liquid in the computation.
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